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Optical tuning of nonlinear dynamics induced by light in nematic liquid crystals
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We study optical control of the nonlinear dynamics generated by an ordinary polarized light at a small angle
of incidence in a nematic liquid crystal film. Recent experiments have demonstrated the possibility of modi-
fying the molecular reorientation dynamics by the addition of a weak incoherent beam orthogonally polarized
to the pump beam. We present a theoretical model for the director dynamics and we demonstrate the possibility
to tune the complexity of the dynami¢sptical tuning using the weak beam intensity as a control parameter.
The generation of new dynamical regimes, not observed in the single beam geometry, is also predicted. Finally,
interpretation of optical tuning effects is discussed on the basis of an effective model.
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[. INTRODUCTION molecular reorientation dynamics by addition of a weak in-
coherent beam orthogonally polarized to the pump beam
The optical field induced reorientation of liquid crystal [17]. Since chaotic dynamics are expected in such a geom-
molecules is a well known phenomenon that has been thogtry, optical control here is a particularly interesting prospect.
oughly investigated for more than two decad#és3]. Par-  Qualitative comparison of experimental data with theory was
ticular attention has been devoted to describing the interadestricted to a generic model with the same bifurcation sce-
tion of a light beam with a nematic liquid crystdLC), i.e., ~ hario for a given set of parameters but without a direct link
an optically uniaxial anisotropic medium characterized by &0 the system, therefore limiting the physical interpretation
local optical axis called a director. Of the great variety of[17].
light—matter interaction geometries, some of them have dem- In the present work, we develop a set of ordinary differ-
onstrated the possibility to generate reorientation dynamicgntial equationsODES that describe optical control of the
[4], and this is closely related to the exchange of spin anguladynamics with a weak additional beam in OPOI geometry.
momentum transfer between light and NLEEg. One such  This control beam is collinear, incoherent and orthogonally
configuration is an elliptically polarized beam at normal in- polarized with respect to the pump electric field. The co-
cidence on a homeotropically aligned NLC, with the directorPropagating geometryrig. 1(b)] was chosen for the purpose
perpendicular to the substrates of the sample. In that casgf simple demonstration. The main result of the model is a
several different limit cycle behaviors are observed such as
oscillation, nutation and precession reginiés/]. The par- (a)
ticular situation where the excitation beam is circularly po-
larized exhibits a peculiar sequence of transitions between
periodic and quasiperiodic regimg&—10]. Another configu-
ration, with a light beam having ordinary linear polarization
at a small angle between the unperturbed director and light
wave vector, is known to produce a peculiar route to chaos

via a cascade of gluing bifurcatiof$1-13. (b) -
Optical control of the director dynamics was first demon-

strated by monitoring the total angular momentum of the Laser BS Epump BS -\Sg NLC

excitation light field using two incoherent circularly polar- 1 ® £ }‘

ized beams of opposite angular momentuii]. There, the il z

precession regime is initially induced by a circularly polar- A)2—— ——VA

ized beam and the angular velocity is controlled by varying A

the intensity of the second beam. This approach was then M v M

extended to control local angular momentum deposition, E

thereby allowing the generation of macroscopic chiral order control

in achiral liquid crystal§15] and optical control of the mul- FIG. 1. (a Definton of the director n

tistability [16]. More recently, experiments for an excitation _ (sjn 9,cosgsin ¢,cosfcosd) in the Cartesian coordinate system
beam with ordinary linear polarization at oblique incidence(y y 7). (b) Interaction geometry. BS, beam splitter; M, mirror; VA,
(OPO) have demonstrated the possibility of modifying the yariable attenuaton/2, half-wave plate; NLC, nematic liquid crys-
tal film; Eyymp, €lectric field of theS-polarized pump beant o,
electric field of theP-polarized control beans,, incidence angle of
*Email address: ebrassel@Ipgm.ens-cachan.fr the beams.
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description of the possibility to control the complexity of the retained N=2, M=2). Finally, the resulting dynamical
dynamics by a procedure that amounts to an increase in irsystem is described by the following set of four coupled
tensity of the control beam. We call this effect “optical tun- ODEs:

ing” in the sense that initial director motion on a perind-

orbit on a Poincaresurface of section can be brought to a $1 Qapys
periodm orbit with m<n once control is activated. On the & b
. . . 0 2 apfyo
other hand, starting from a chaotic regime the system can be —| o |= 2 b ¢2ﬁ917925 (3)
trapped in a periodr orbit or even a new regime that is not at| i wfys | Capro
accessible with a single beam excitation. Moreover, in an 0, dagys
attempt to understand the physical mechanism of the optical
stabilization phenomenon, we propose a corresponding’-
. ' : ith
single beam model where affectivecontrol parameter is
used instead of the control beam intensity. O<a+pB+y+6<3 (4)

(a, B, v, andé are integers wherer=(yL?)/(7?K5) is a
characteristic reorientation time withthe cell thicknessy
We consider the situation depicted in Fig. 1, where arthe orientational viscosity anid; the bend elastic constant.
ordinary pump beam with linear polarization impinges on theCoefficientsa, b, c andd are calculated using the formalism
NLC sample at small angls,. The copropagating control presented in Ref[19] and are expressed in terms of the
beam is linearly polarized in the incidence plamezj. For  normalized intensity parameteps and p,,
the sake of simplicity, we assume infinite plane waves and
thus we consider solutions that only depend on the spatial
coordinatez and timet. This assumption could prevent quan-
titative comparison with experimental observations if the
beam size is less than the cell thickness, for which moravhere | ;=|E,,nd® is the intensity of the pump beanh;
delicate treatment is necessafy]. =|Econtrol % is the intensity of the control beam. The intensity
The director is described by the angl@sand ¢, n ||:=(87T6||772K3)/(636J_L2) is the Fredericksz transition
= (sin 6,cos@sin ¢,cosfcose) [Fig. 1(@)], and the strong threshold for linearly polarized excitation at normal inci-
anchoring conditions [0(0t)=6(L,t)=¢(0t)=¢(L,t) dence where, (¢)) is the dielectric permittivity perpendicu-
=0] allow one to expand these angles into Fourier series, lar (paralle) to n at optical frequency and,=¢,—¢€, . We
further define the parameters=e,/e, , s=sq/€? and «
=(L/\)[s2€X?5/(1+ 5)] where\ is the wavelength of the

Il. MODEL

: ®)

6(2,t)=nzl 6,(t)sin(nmz/L),

(1) light field. The physical meaning aof comes from the ob-
servation that the phase shift betweenoaand ane wave at
the output of the cell=L), when there is no reorientation

* (6= ¢=0), is well approximated by [19]. Finally, we
¢>(z,t):n21 dn(t)sinnmz/L). (2)  have used the ratiok;/Ks=2/3 andK,/Ks=1/2 of the

Frank elastic constants that are valid for NIEZ at room
temperature. The expressions for coefficieatd, c andd
The system of equations that describes the director dynamicge given in the Appendix within the limit af?<1 and «?

is obtained from the fundamental equations of liquid crystals<1. Our simulations are performed with parametsgs
and those of electromagnetic waves by writing the balance o£ 7 ;,=0.338, A=514.5 nm andL=50 um for which
viscous, elastic and electromagnetic torque exerted on th?—g 6x 103 and x?=6.0x 10 2. As expected, one can
director[18]. By projecting these equations on modgsand  verify that system(3) reduces to the one in Ref19] by
¢n, a set of ODEs is obtained. For the simplest nonlineasiettingp,=0 and6,=0.

model and assuming small reorientation amplitudg &
<1) we expand all functions as a power series in these
angles up to third order. Finally, by retaining a finite number
of modes for each angles we have a set of coupled, first First, we studied, the bifurcation scenario without the con-
order, nonlinear ODEs for variableg),...,¢y and trol beam p,=0) and, as was predicted in Refd.2] and

01, ...,0y. One can show that the minimum number of [19] we found that the presence of mode does not alter
modes required to properly describe the case of a singlsignificantly the dynamics with respect to the minimal model
o-polarized excitation beam corresponds Ne=2 and M (when p,=0) where only ¢;, ¢, and 6, are retained
=1 sinceg, is the only linearly unstable mode for excitation [12,19. More precisely, we found that a transition to chaos
intensities not too high above the primary instability and thatvia a cascade of gluing bifurcations occurs although the in-

IIl. SIMULATIONS

three variables suffice to obtain chaotic behayi®]. How-
ever, in the present casé; is always unstable due to the
seconde-polarized beamdygog# 0; see the Appendjxhere-
fore the second mode in the direction, 6,, must also be

termediate transition thresholds are slightly lowered with re-
spect to the three mode model whexis taken into account
(Table ). In Table I, we report the successive transition
thresholds starting from; =0 and increasing the excitation
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TABLE |. Calculated values of the successive transitions thresh-
olds for the three mode model(, ¢»,6,) and four mode model

(¢1v¢2161102)'

Transition threshold Three mode model  Four mode model
p© 1.063 1.063
p© 1.717 1.682
pd 1.809 1.773
p® 1.947 1.902

intensity. The threshold valug® corresponds to destabili-
zation of the initial homeotropic state to a stationary reori-
ented state ang(® refers to the supercritical Hopf bifurca-
tion which leads to the appearance of two limit cycles that
are mutual images under symmetry of,—— ¢, (S)
[12,19. The valuep("™=1) are the gluing bifurcations thresh-
olds where two asymmetric limit cycles that are mutual im-
ages unde§ merge into a single double-length limit cycle at
the origin[12,19. The limit cycles above;=p" (n<2)
are summarized in Fig. 2 where projections of the director
trajectory in the planesd,8,) (left column and (¢,, 6,)
(right column are displayed.

When the control beam is activated,¢0), the initial
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FIG. 3. Stabilization of the periodic regime below the first glu-
ng bifurcation atp;=1.75 in a distorted regime. The control beam

director dynamics may be significantly altered even for Smal‘ntensity is activated at=250r with R=0.17 (to=250r andt,

values of the ratio between the control and the pump beamto:

intensities,

2

47; see the tejt The time behavior of angleg, (upper
pane) and 6, (lower panel is indicated.

This is demonstrated in Figs. 3 and 4 which repreggit)

R=—. (6)
Iy
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! -0.1 20.02
-0.15 (@) 0 (a)
-0.2 0 0.2 -0.1 0 0.1
% %
0 0.06
-0.05 0 0.04
! -0.1 20.02
-0.15 (b) 0} (b)
-0.2 0 0.2 -0.1 0 0.1
¢1 ¢2
0 0.06
-0.05 0 0.04
! -0.1 20.02
-0.15 (c) 0 )
-0.2 0 0.2 -0.1 0 0.1
% %

FIG. 2. Projections of the director trajectory in plangs, 6,
(left column and ¢,, 6, (right column for different values of ex-
citation intensityp without the control beamg,=0). p;= (&

1.77;(b) 1.85;(c) 1.91.

and ¢,(t) before and after the control beam has been
switched on for different values @f;, which is kept fixed. In
Fig. 3, the limit cycle obtained gi;=1.75 is stabilized to a
fixed point that corresponds to a stationary distorted state, as
observed experimentally in R¢fl7]. However, experimental
stabilization was observed for values Rfas small as 107

for which we did not observe stabilization in the present
simulations. This discrepancy may be due to the fact that, in
our case, light propagation is solved up to third order in the
angles and that in Ref17] contrapropagating geometry was
used. In fact, truncation to third angle in the angles has
brought us to use a smoofh sirPm/2(t—to/t;—t,) where
(tog,t1) correspond to the finite duration of the activation of
the control bearrather than a steplike profile for simulation
of the addition of the second beam, but only for the case
presented in Fig. 3 where the value Rfis relatively large.
On the other hand, a periodic regime could be driven into
another periodic regime using the control beam. This is
shown in Fig. 4 where a single double-length limit cycle at
p1=1.80 [Fig. 4(c)], above the first gluing bifurcation, is
stabilized into a single limit cyclgFig. 4(d)] very similar to

the one obtained without control before the first gluing bifur-
cation[see Fig. 2a)]. In fact, the final state can be either one
of the two single limit cyclegmutual images undes§) de-
pending on when the control beam is activated.

The chaotic regime can also be stabilized into various
regimes, periodic or not. Figure 5 shows three different op-
tically stabilized limit cycle behaviors starting from tipg
=1.98 andp,=0. Figure %a) corresponds to the initial at-
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FIG. 4. Stabilization of the periodic regime between the first and ¢1 (1)2

the second gluing bifurcation at;=1.80 in another periodic re-
gime. The control beam intensity is activatedtat300r with R
=0.14. (a) ¢4(t); (b) 64(t); (c),(d) projection of the limit cycle in
plane ¢4, 6, before and after the control beam is switched on.

FIG. 5. Projections of the director trajectory in plangs, 6,
(left column and ¢», 8, (right column for p;=1.98 and different
values of control beam intensitiR= (a) O; (b) 0.02;(c) 0.10; (d)

tractor (R=0) while Figs. %b)-5(d) correspond toR 0.13.

=0.02, 0.10 and 0.13, respectively; these results are in good

agreement with the observations reported in REF]. One  This is illustrated in Fig. 3, where the director is closer to the
again notes that the stabilized periodic regime is similar tqx,z) plane (i.e., $=0 and §#0) in the presence of the
the one obtained after the second gluing bifurcation in th&econd beam.

case ofR=0.02[cf. Figs. §b) and Zc)] to the one obtained Moreover, the control beam can drive the system towards
after the first gluing bifurcationR=0.10[cf. Figs. 8c) and  regimes that cannot be observed without the second beam.
2(b)] and to the one obtained after Hopf bifurcationat For example, Fig. 6 shows a situation where the initial cha-
=p!?, R=0.13[cf. Figs. §d) and 2a)]. This demonstrates otic regime is set into a period-doubled asymmetric limit
the possibility of tuning the initial complexity of the dynam- cycle usingR=0.06. Figure 7 presents corresponding pro-
ics with a weak addltlor_lal beam us!rﬁgas a_contrpl param- - jactions of the director trajectory in the plariés),,6,) and
eter, and we refer to this effect aptical tuning It is worth #,,0,)] for the stabilized regime. The generation of a new

mentioning that, co_ntra_ry FO. standard techmques_th_at allo ynamical regime also agrees with previous experimental re-
control of chaos using judicious smalynamicalvariations sults[17]

of a control parametdi20,21], the proposed method consists In an attempt to physically interpret the origin of the non-
of the application ofstatic perturbation, which brings addi- . Mpt 1o physically interp gl
linear behavior of the system in the presence of a weak ad-

tional nonlinearities. » . . .
Phenomenologically, the control beam reduces the deditional e-polarized beam, we would like to emphasize the

grees of freedom of the system. This can be understooﬁr“Cial rol_e plgyed by the_ incidence angle in director dynam—
qualitatively since the additional beam éspolarized with IS €ven in singleo-polarized geometry. It was established
respect to the initial homeotropic state. In fact, the correthat different bifurcation scenarios are expected, depending
sponding interaction geometry is thresholdlesg#0; see 0N the value ofj, and that different dynamical regimes with
the Appendix in contrast to the situation that corresponds torespect to those observed in the cage 7 ° eventually oc-

the pump beam alone. It is therefore expected that the diresur[19]. In Sec. 1V, it is shown that a single beam model can
tor dynamics are constrained sinnetends to be attracted be derived by using asffectiveincidence angle as a control
towards the polarization plane of the additional beaqz). parameter instead of the control beam intensity.
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FIG. 8. (a) Reorientation of the NLC by aeabeam with angle of
_0.15} 4 incidences,. (b) Local angles;,c.(z) =s— 6(2).
L-ON
200 250 300 350 400 From a qualitative point of view, simultaneous action of the
Time (units of 7) collinearo- ande-polarized beams can thus be considered to

be that of a single® beam with an effective incident angle
that depends on the reorientation amplitude induced by the
e-beam alone. To this end, we introduce the effective angle
of incidence,

FIG. 6. Stabilization of the chaotic regime gt=1.98 in a
period-doubled asymmetric limit cycle. The control beam intensity
is activated at=300r with R=0.06. The time behavior of angles
¢, (upper paneland 6, (lower panel is indicated.

IV. EFFECTIVE MODEL Setr={Siocal)z (8)

The main idea behind the effective single beam model isvhere the angled brackets refer to spatial averaging along the
to consider separately the action of the pump and the contra direction. Then, a single beam analgg, € 0) of the origi-
beam on the NLC although both act simultaneously in a reahal problem with parameteys,, p, ands is obtained using
system. First, we focus on the effect of a wedalkth respect
to Ig) e-polarized beam with angle of incidenasg. It is [p1,p2,S]=[p1,0Sei(p2,S) ], 9
known that the corresponding reorientation process is thresh-
oldless and that, in its final State, the director’s prOﬁIe iSWhere the effective ang|eeﬁ(p2,s) Corresponds to the situ-
stationary and lies in the plane of incidenfé=0, 6  ation where the NLC is reoriented by tleebeam alone at

=6(2)], as presented in Fig.(8 [1]. Then, the(collinea)  angle of incidencesy=se'? with intensity p,. From the
pump beam is considered to interact with the latter reoriengypoye discussion, we have

tation profile#(z). In that case, the local angle of incidence
between the axis and wave vectdk is therefore expressed 1

L
as[Fig. 8b)] Seft(p2,S) =S— Efo 6(2),,-0dz, (10
Siocal( 2) =S— 6(2). (™ where 6(2),,,~o is the reorientation profile that corresponds
. to p1=0, p, andsy. The latter in-plane$=0) reorientation
005 profile is the solution of the following homogeneous nonlin-
oot ear system of two equatiofisee Eqs(3) and(4)]:
e e 0.03 c
-0.08 00y8
1 2
6,76,°=0, 11
—0.12 0.01 7.0 ( dOOy(‘i) 172 ( )
018 ~0.01 with
-0.2 -0.1 0 0.1 0.2 -0.1 -0.05 0 0.05 0.1
¢ %
0<y+<3. (12

FIG. 7. Projection of the director trajectory in planes, 6, ) _ .
(left) and ¢, , 6, (right) in the regime obtained from stabilization of Figure 9a) shows the solution of Eq$11) and(12) in the
the dynamics ap,=1.98 withR=0.06 (see Fig. 6. range of 0<p,=<0.35 and the effective angle of incidence,
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FIG. 9. (a) Calculatedd; (solid line) and 6, (dashed lingvs p,
for p;=0 andsy=7°. (b) Calculated effective angle of incidence

FIG. 10. Stabilization of the chaotic regime in the effective
Sefr0 VS pp under the same conditions as thosdan

model that corresponds tp;=1.98, R=0.1 andsy=7° in the
original model[see Fig. ¥c)]. The incidence angle is set to the new
Seff,0. IS calculated as a function @f, using Eq.(10) when  value, se;(0.198sp) = 8.4°, att=300r when effective control is
so=7° [Fig. Ab)]. Typically, the effective angle can in- activated.(@ ¢,(t); (b) 64(t); (c),(d) projection of the director
crease by more than 1° with respect to the real angle offajectory in planep, 6, before and after the angle is changed.
incidence even with moderate valuesmf[Fig. 9b)]. This

allows us to understand qualitatively the results in Sec. lllalso predicted. The results obtained agree with previous ex-
since the dynamics are very sensitive to the angle of inciperimental observations and physical interpretation of the
dence[19] and that, from the equivalence given by E®), it stabilization phenomenon was proposed through an effective
is possible to describe optical stabilization using the singlanodel, in which the angle of incidence is viewed as the
beam model ¢,=0) but varying the angle of incidence. For control parameter and only one beam is used. We hope this
instance, Fig. 10 shows the analog of the stabilization of thevork will be useful for systematic analysis of previous and
chaotic regime ap,=1.98 ands,=7 ° with R=0.1[see Fig.  future experimental results.

5(c)] using the effective model. In that case, it corresponds to

an increase in incidence angle by the amount

Seff 0(0.198sp) —sp=1.4°, but keepingp;=1.98 and p, ACKNOWLEDGMENTS

=0. The final state obtained in the effective model is very  The guthor is grateful to G. Cipparrone for communica-
similar to the one obtain in the original model where thetion of a preprint version of Ref17] prior to publication and

angle of incidence is fixed and the value @f is changed thanks L. J. Duband T. V. Galstian for helpful discussions
interpretation of the stabilization phenomenon.

V. CONCLUSION APPENDIX

In this work, we have studied optical control of the direc- _ Here we give explicit expressions for the nonzero coeffi-
tor dynamics generated by an ordinary polarized light at £€NtS8agys: Dagys: Capys @NAd g, introduced in Eq(3)
small angle of incidence in a homeotropic nematic liquidfor @+ B8+ y+ <3 with «, B, y and é integers:
crystal film by adding a collinear orthogonally polarized

beam with respect to the pump beam. A set of ordinary dif- 2

ferential equations was obtained and the possibility to tune ag000= — 1+ p1[1—k*]—p 17" <, (A1)
the complexity of the dynamics using the control beam in- g

tensity as a control parameter was demonstrated. New dy-

namical regimes not observed in single beam geometry were agio= — (p1— p2) K2, (A2)
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